Export 81 results:
Sort by: [ Author  (Asc)] Title Type Year
A B C D E F G H I [J] K L M N O P Q R S T U V W X Y Z   [Show ALL]
J., II, Ajayi CA.  1992.  “ Management of Cooperative Housing Estates”. ”, Procedings of the First National Conference on Cooperative Housing for Nigeria. :123-129., Italy: Studies in Environmental Design in West Africa
J.O., A, Aderinto JA.  2006.  On the Spot Literacy: Panacea for Drop –Out and Skill Development in Community Literacy Education in Nigeria,. The International Journal of Learning, (A publication of Common Ground. 13. (5) .:57-60.
Jafarinia, M, Vos T, Lim S, Naghavi M, Murray C, Onwujekwe O, Oancea B, Aravkin A, Zheng P, Cristiana A, Abbas K, Abbasi-Kangevari M, Abd-Allah F, Abdelalim A, Abdollahi M, Abdollahpour I, Abegaz K, Abolhassani H, Aboyans V, Ghajar A.  2020.  Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019, 2020/10/16. 396:1204-1222. Abstract
Jaiyeola, TG.  2009.  Basic Properties of Second Smarandache Bol Loops. International Journal of Mathematical Combinatorics. 2:11-20.ijmc-2-2009basic_properties_of_second_smarandache_bol_loops.pdf
Jaiyeola, TG, Solarin ART, Adeniran JO.  2014.  Some Bol-Moufang characterizations of the Thomas Precession of a gyrogroup. Algebras, Groups and Geometries. 31(3):341-362.
Jaiyeola, TG.  2012.  Osborn loops and their universality. Analele Ştiinţifice Ale Universităţii "Alexandru Ioan Cuza" Din Iaşi, Matematică. 58(2):437-452.
Jaiyeola, TG, Adeniran JO, Agboola AAA.  2013.  On the Second Bryant Schneider Group of Universal Osborn loops. Societatea Română de Matematică Aplicată si Industrială Journal. 9(1):37-50.
Jaiyeola, TG, Adeniran JO.  2009.  New Identities in Universal Osborn Loops. Quasigroups And Related Systems. 17(1):55-76.qrs17_1_6paper_2009.pdf
Jaiyeola, TG.  2011.  Smarandache Isotopy Of Second Smarandache Bol Loops. Scientia Magna Journal. 7(1):82-93.sm2011.pdf
Jaiyeola, TG, Smarandache F.  2018.  Inverse Properties in Neutrosophic Triplet Loop and their Application to Cryptography. Algorithms . 11(3):32.
Jaiyeola, TG.  2008.  Some Isotopy-Isomorphy Conditions For m-Inverse Quasigroups And Loops. Analele Stiintifice ale Universitatii Ovidius Constanta, Seria Matematica. 16(2):57-66.tope11bovidus.pdf
Jaiyeola, TG.  2011.  On Three Cryptographic Identities in Left Universal Osborn Loops. Journal of Discrete Mathematical Sciences & Cryptography. 14(1):33-50.jdmcon_3_cryptography_identities_in_luosls.pdf
Jaiyeola, TG, adeniregun AA, Asiru MA.  2017.  Finite FRUTE loops. Journal of Algebra and Its Applications. 16(2):1750040,10pp.
Jaiyeola, TG.  2010.  Relatioship between code loops and some other loops. NUMTA Bulletin. 1:45-52.numpta_2010_paper.pdf
Jaiyeola, T, Ilojide E, Olatinwo M, Smarandache F.  2018.  On the Classification of Bol-Moufang Type of Some Varieties of Quasi Neutrosophic Triplet Loop (Fenyves BCI-Algebras), 2019/06/02. Abstract

In this paper, Bol-Moufang types of a particular quasi neutrosophic triplet loop (BCI-algebra), chritened Fenyves BCI-algebras are introduced and studied. 60 Fenyves BCI-algebras are introduced and classified. Amongst these 60 classes of algebras, 46 are found to be associative and 14 are found to be non-associative. The 46 associative algebras are shown to be Boolean groups. Moreover, necessary and sufficient conditions for 13 non-associative algebras to be associative are also obtained: p-semisimplicity is found to be necessary and sufficient for a F 3 , F 5 , F 42 and F 55 algebras to be associative while quasi-associativity is found to be necessary and sufficient for F 19 , F 52 , F 56 and F 59 algebras to be associative. Two pairs of the 14 non-associative algebras are found to be equivalent to associativity (F 52 and F 55 , and F 55 and F 59). Every BCI-algebra is naturally an F 54 BCI-algebra. The work is concluded with recommendations based on comparison between the behaviour of identities of Bol-Moufang (Fenyves' identities) in quasigroups and loops and their behaviour in BCI-algebra. It is concluded that results of this work are an initiation into the study of the classification of finite Fenyves' quasi neutrosophic triplet loops (FQNTLs) just like various types of finite loops have been classified. This research work has opened a new area of research finding in BCI-algebras, visa -vis the emergence of 540 varieties of Bol-Moufang type quasi neutrosophic triplet loops. A 'Cycle of Algebraic Structures' which portrays this fact is provided.

Jaiyeola, TG.  2008.  On the factor set of code loops. NUMTA Bulletin. 1:1-14.
Jaiyeola, TG.  2009.  On the Universality of central loops. Acta Universitatis Apulensis Mathematics-Informatics. 19:113-124.acta_apolensis_paper-12.pdf
Jaiyeola, TG.  2014.  Some simplicial complexes of universal Osborn loops. Analele Universitatii De Vest Din Timisoara, Seria Matematica-Informatica (Publisher: De Gruyter-DOI: 10.2478/awutm-2014-0005). 52(1):65–79.
Jaiyeola, TG.  2008.  A Pair of Smarandachely Isotopic Quasigroups And Loops of The same variety. International Journal of Mathematical Combinatorics. 1:36-44.ijmc-1-2008a_pair_of_smarandachely_isotopic_quasigroups.pdf
Jaiyeola, TG.  2005.  An Isotopic Study of Properties of Central Loops . (J.O. Adeniran, A. R. T. Solarin, Eds.)., Abeokuta: University of Agriculture
Jaiyeola, TG.  2013.  On Two Cryptographic Identities in Universal Osborn Loops. Journal of Discrete Mathematical Sciences and Cryptography. 16(2-3):95-116.